MEMORY Mobile FCRAMTM cmos

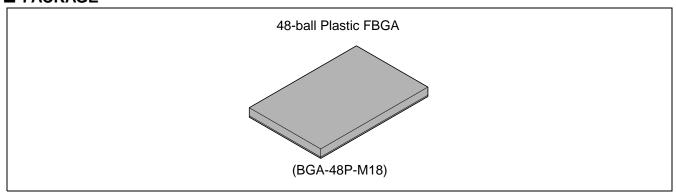
32M Bit (2 M word × 16 bit) Mobile Phone Application Specific Memory

MB82DPS02183B-85/-85L

CMOS 2,097,152-WORD x 16 BIT Fast Cycle Random Access Memory with Low Power SRAM Interface

■ DESCRIPTION

The Fujitsu MB82DPS02183B is a CMOS Fast Cycle Random Access Memory (FCRAM*) with asynchronous Static Random Access Memory (SRAM) interface containing 33,554,432 storages accessible in a 16-bit format. This MB82DPS02183B is suited for mobile applications such as Cellular Handset and PDA.


*: FCRAM is a trademark of Fujitsu Limited, Japan

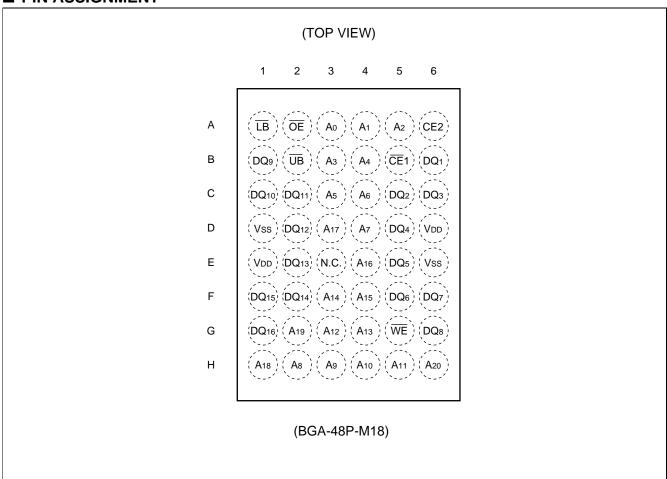
■ FEATURES

- · Asynchronous SRAM Interface
- Fast Access Cycle Time: tce = 85 ns Max
- 8 words Page Access Capability: tPAA = 25 ns Max
- Low Voltage Operating Condition : $V_{DD} = +1.65 \text{ V}$ to +1.95 V
- Wide Operating Temperature : $T_A = -30 \, ^{\circ}\text{C}$ to $+85 \, ^{\circ}\text{C}$
- Byte Control by LB and UB

(Continued)

■ PACKAGE

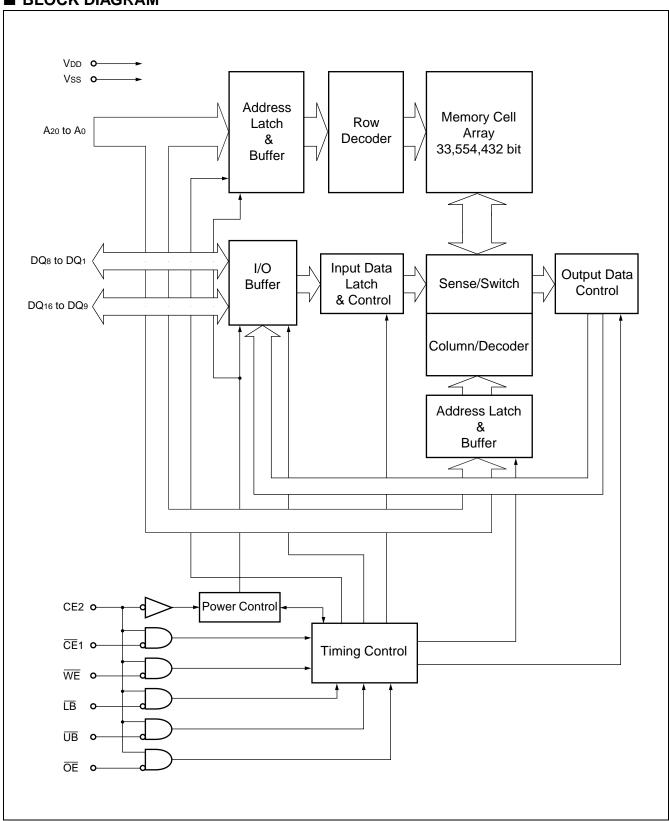
(Continued)


• Low Power Consumption : $I_{DDA1} = 25 \text{ mA Max}$ $I_{DDS1} = 200 \mu A \text{ Max}$

100 μA Max (L version)

• Various Partial Power Down mode : Sleep

4 M-bit Partial8 M-bit Partial16 M-bit Partial


■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin Name	Description
A ₂₀ to A ₀	Address Input
CE1	Chip Enable (Low Active)
CE2	Chip Enable (High Active)
WE	Write Enable (Low Active)
ŌĒ	Output Enable (Low Active)
LB	Lower Byte Control (Low Active)
<u>UB</u>	Upper Byte Control (Low Active)
DQ8 to DQ1	Lower Byte Data Input/Output
DQ ₁₆ to DQ ₉	Upper Byte Data Input/Output
V _{DD}	Power Supply
Vss	Ground
N.C.	No Connection

■ BLOCK DIAGRAM

■ FUNCTION TRUTH TABLE

Mode	CE2	CE1	WE	ŌĒ	LB	ŪB	A ₂₀ to A ₀	DQ ₈ to DQ ₁	DQ ₁₆ to DQ ₉				
Standby (Deselect)	Н	Н	Х	Х	Х	Х	Х	High-Z	High-Z				
Output Disable*1			Н	Н	Х	Х	*3	High-Z	High-Z				
Output Disable (No Read)					Н	Н	Valid	High-Z	High-Z				
Read (Upper Byte)			Н	L	Н	L	Valid	High-Z	Output Valid				
Read (Lower Byte)					"	L		L	Н	Valid	Output Valid	High-Z	
Read (Word)	Н	L	L	L					L	L	Valid	Output Valid	Output Valid
No Write					Η	Н	Valid	Invalid	Invalid				
Write (Upper Byte)					ı		L	H*4	Н	L	Valid	Invalid	Input Valid
Write (Lower Byte)					L	Н	Valid	Input Valid	Invalid				
Write (Word)									L	L	Valid	Input Valid	Input Valid
Power Down*2	L	Х	Х	Х	Х	Х	Х	High-Z	High-Z				

Notes : $L = V_{IL}$, $H = V_{IH}$, X can be either V_{IL} or V_{IH} , High-Z = High Impedance

^{*1 :} Should not be kept this logic condition longer than 1 µs.

^{*2 :} Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the selection of Power Down Program. Refer to "Power Down Program" for the detail.

^{*3 :} Can be either V_{IL} or V_{IH} but must be valid before Read or Write.

^{*4 :} OE can be V_L during Write operation if the following conditions are satisfied;

⁽¹⁾ Write pulse is initiated by $\overline{\text{CE}}1$ (refer to $\overline{\text{CE}}1$ Controlled Write timing) , or cycle time of the previous operation cycle is satisfied.

⁽²⁾ OE stays V_{IL} during Write cycle.

■ POWER DOWN

Power Down

The Power Down is to enter low power idle state when CE2 stays Low.

The MB82DPS02183B has four power down mode, Sleep, 4 M Partial, 8 M Partial, and 16 M Partial.

These can be programmed by series of read/write operation. Each mode has following features.

Mode	Data Retention	Retention Address
Sleep (default)	No	N/A
4 M Partial	4 M bit	00000h to 3FFFFh
8 M Partial	8 M bit	00000h to 7FFFFh
16 M Partial	16 M bit	00000h to FFFFFh

The default state is Sleep and it is the lowest power consumption but all data will be lost once CE2 is brought to Low for Power Down. It is not required to program to Sleep mode after power-up.

Power Down Program Sequence

The program requires total 6 read/write operation with unique address and data. Between each read/write operation requires that device be in standby mode. Following table shows the detail sequence.

		, ,	•
Cycle #	Operation	Address	Data
1st	Read	1FFFFFh (MSB)	Read Data (RDa)
2nd	Write	1FFFFFh	RDa
3rd	Write	1FFFFFh	RDa
4th	Write	1FFFFFh	0000h
5th	Write	1FFFFFh	Data Key
6th	Read	Address Key	Read Data (RDb)
6th	Read	Address Key	Read Data (RDb)

The first cycle is to read from most significant address (MSB) .

The second and third cycle are to write back the data (RDa) read by first cycle. If the second or third cycle is written into the different address, the program is cancelled and the data written by the second or third cycle is valid as a normal write operation.

The forth and fifth cycle is to write the data key for program. The data of forth cycle must be all 0's and data of fifth cycle is a data key for mode selection. If the forth or fifth cycle is written into different address, the program is also cancelled but write data may not be written as normal write operation.

The last cycle is to read from specific address key for mode selection. The both data key written by fifth cycle and address key must be the same mode for proper programming.

Once this program sequence is performed from a Partial mode to other Partial mode, the write data may be lost. So, it should perform this program prior to regular read/write operation if Partial mode is used.

Address Key

The address key has following format.

Mode		Address						
Wode	A 20	A 19	A ₁₈ to A ₀	Binary				
Sleep (default)	1	1	1	1FFFFFh				
4 M Partial	0	1	1	0FFFFFh				
8 M Partial	1	0	1	17FFFFh				
16 M Partial	0	0	1	07FFFFh				

Data Key

The data key has following format.

Mode	Data						
Wode	DQ ₁₆ to DQ ₉	DQ ₈ to DQ ₂	DQ ₁	DQ₀			
Sleep (default)	0	0	1	1			
4 M Partial	0	0	1	0			
8 M Partial	0	0	0	1			
16 M Partial	0	0	0	0			

The upper byte of data code may be ignored and it is just for recommendation to write 0's to upper byte for future compatibility.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Va	Unit	
Farameter	Symbol	Min	Max	Onit
Voltage of V _{DD} Supply Relative to Vss	V _{DD}	-0.5	+3.6	V
Voltage at Any Pin Relative to Vss	VIN, VOUT	-0.5	+3.6	V
Short Circuit Output Current	Іоит	-50	+50	mA
Storage Temperature	Тѕтс	– 55	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Va	Unit		
Farameter	Symbol	Min	Max	1 Unit	
Comple Valence*1	V _{DD}	1.65	1.95	V	
Supply Voltage*1	Vss	0	0	V	
High Level Input Voltage *1, *2	ViH	$V_{DD} \times 0.8$	V _{DD} + 0.2	V	
Low Level Input Voltage *1, *3	VıL	-0.3	$V_{DD} \times 0.2$	V	
Ambient Temperature	TA	-30	+85	°C	

^{*1 :} All voltage are referenced to Vss.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

^{*2 :} Maximum DC voltage on input and I/O pins are VDD + 0.2 V. During voltage transitions, inputs may overshoot to $V_{DD} + 1.0 \text{ V}$ for periods of up to 5 ns.

^{*3 :} Minimum DC voltage on input or I/O pins is -0.3 V. During voltage transitions, inputs may undershoot Vss to −1.0 V for periods of up to 5 ns.

■ PIN CAPACITANCE

 $(f = 1 \text{ MHz}, T_A = +25 ^{\circ}C)$

Parameter	Symbol Test conditions			Unit		
rarameter	Syllibol	rest conditions	Min	Тур	Max	Offic
Address Input Capacitance	C _{IN1}	$V_{IN} = 0 V$	_	_	5	pF
Control Input Capacitance	C _{IN2}	V _{IN} = 0 V	_	_	5	pF
Data Input/Output Capacitance	C _{I/O}	Vio = 0 V	_	_	8	pF

■ ELECTRICAL CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

1. DC CHARACTERISTICS

Parameter		Symbol	Toot condition	Val	lue	Unit	
Parai	neter	Symbol	Test condition	15	Min	Max	Unit
Input Leakage	Current	Iц	$V_{SS} \leq V_{IN} \leq V_{DD}$		-1.0	+1.0	μΑ
Output Leakag	e Current	Ісо	0 V ≤ Vouт ≤ Vdd, Output Disable		-1.0	+1.0	μΑ
Output High Vo	oltage Level	Vон	$V_{DD} = V_{DD} Min$, $I_{OH} = -0.5 m_A$	4	1.4	_	V
Output Low Vo	Itage Level	Vol	IoL = 1 mA		_	0.4	V
		- I _{DDPS}		SIEED	_	30	μΑ
	L version	IDDPS	SLEEP		_	10	μΑ
		DDP4		4 M partial	_	80	μΑ
V _{DD} Power	L version	IDDP4	VDD = VDD Max, VIN = VIH or VIL,	4 M partial	_	45	μΑ
Down Current		DDP8	$CE2 \le 0.2 \text{ V}$	8 M partial	_	100	μΑ
	L version	- IDDP8		o ivi partiai	_	55	μΑ
		DDP16		16 M partial	_	130	μΑ
	L version	IDDP16		10 IVI Partial	_	70	μΑ
			$V_{DD} = V_{DD} Max,$		_	5	mA
V _{DD} Standby	L version	IDDS	$\frac{V_{IN} = V_{IH} \text{ or } V_{IL},}{CE1 = CE2 = V_{IH}}$			1.5	mA
Current			V _{DD} = V _{DD} Max,	.		200	μΑ
	L version	DDS1	$\frac{V_{\text{IN}} \leq 0.2 \text{ V or V}_{\text{IL}} \geq V_{\text{DD}} - 0.0}{\text{CE}1 = \text{CE}2 \geq V_{\text{DD}} - 0.2 \text{ V}}$	2 V,	_	100	μА
V Active Cur	ront	IDDA1	V _{DD} = V _{DD} Max, V _{IN} = V _{IH} or V _{IL} ,	trc/twc =	_	25	mA
VDD Active Current		IDDA2	CE1 = V _{IL} and CE2 = V _{IH} , I _{OUT} = 0 mA	t _{RC} /t _{WC} = 1 μs	_	3	mA
V _{DD} Page Read	l Current	Iddaз	$\frac{V_{DD} = V_{DD} \ Max, \ V_{IN} = V_{IH} \ or}{CE1 = V_{IL} \ and \ CE2 = V_{IH},}$ $I_{OUT} = 0 \ mA, \ t_{PRC} = Min$	•		10	mA

Notes: • All voltages are referenced to Vss.

• DC Characteristics are measured after following POWER-UP timing.

• lout depends on the output load conditions.

2. AC CHARACTERISTICS

(1) READ OPERATION

Downwater	Cumb al	-85/	/-85L	l lm:4	Natas
Parameter	Symbol	Min	Max	Unit	Notes
Read Cycle Time	trc	85	1000	ns	*1, *2
CE1 Access Time	t ce	_	85	ns	*3
OE Access Time	toe	_	50	ns	*3
Address Access Time	t AA	_	85	ns	*3, *5
LB/UB Access Time	tва	_	35	ns	*3
Page Address Access Time	t PAA	_	25	ns	*3, *6
Page Read Cycle Time	t PRC	30	1000	ns	*1, *6, *7
Output Data Hold Time	tон	5	_	ns	*3
CE1 Low to Output Low-Z	t clz	5	_	ns	*4
OE Low to Output Low-Z	t oLz	0	_	ns	*4
LB/UB Low to Output Low-Z	t BLZ	0	_	ns	*4
CE1 High to Output High-Z	t cHz	_	20	ns	*3
OE High to Output High-Z	tонz	_	20	ns	*3
LB/UB High to Output High-Z	t внz	_	20	ns	*3
Address Setup Time to CE1 Low	tasc	-5	_	ns	
Address Setup Time to OE Low	t aso	12	_	ns	
Address Invalid Time	tax	_	10	ns	*5, *8
Address Hold Time from CE1 High	t chah	-5	_	ns	*9
Address Hold Time from OE High	tонан	-5	_	ns	
CE1 High Pulse Width	t cp	15		ns	

^{*1 :} Maximum value is applicable if $\overline{CE}1$ is kept at Low without change of address input of A20 to A3.

^{*2 :} Address should not be changed within minimum trc.

^{*3 :} The output load 50 pF with 50 Ω termination to $V_{\text{DD}} \times 0.5 \text{ V}.$

^{*4 :} The output load 5 pF without any other load.

^{*5 :} Applicable to A_{20} to A_3 when $\overline{CE}1$ is kept at Low.

^{*6 :} Applicable only to A2, A1 and A0 when $\overline{CE}1$ is kept at Low for the page address access.

^{*7 :} In case Page Read Cycle is continued with keeping $\overline{\text{CE}}1$ stays Low, $\overline{\text{CE}}1$ must be brought to High within 4 μ s. In other words, Page Read Cycle must be closed within 4 μ s.

^{*8 :} Applicable when at least two of address inputs among applicable are switched from previous state.

^{*9:} trc (Min) and tprc (Min) must be satisfied.

(2) WRITE OPERATION

Parameter	Symbol	-85/	-85L	Unit	Notes
Parameter	Symbol	Min	Max	Offic	Notes
Write Cycle Time	twc	85	1000	ns	*1, *2
Address Setup Time	t as	0	_	ns	*2
CE1 Write Pulse Width	tcw	50	_	ns	*3
WE Write Pulse Width	twp	50	_	ns	*3
LB/UB Write Pulse Width	t _{BW}	50	_	ns	*3
LB/UB Byte Mask Setup Time	t BS	-5		ns	*4
LB/UB Byte Mask Hold Time	t вн	5		ns	*5
CE1 Write Recovery Time	twrc	15	_	ns	*6
WE Write Recovery Time	twr	15	1000	ns	*6
LB/UB Write Recovery Time	t BR	15	1000	ns	*6
Data Setup Time	tos	20	_	ns	
Data Hold Time	tон	0		ns	
OE High to CE1 Low Setup Time for Write	toncl	-5		ns	*7
OE High to Address Setup Time for Write	toes	0	_	ns	*8
LB and UB Write Pulse Overlap	t bwo	20	_	ns	
CE1 High Pulse Width	t cp	15	_	ns	

- *1 : Maximum value is applicable if $\overline{CE}1$ is kept at Low without any address change.
- *2 : Minimum value must be equal or greater than the sum of write pulse (tcw, twp or tbw) and write recovery time (twrc, twr or tbr).
- *3 : Write pulse is defined from High to Low transition of $\overline{CE}1$, \overline{WE} , or $\overline{LB}/\overline{UB}$, whichever occurs last.
- *4 : Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of $\overline{\text{CE}}1$ or $\overline{\text{WE}}$ whichever occurs last.
- *5 : Applicable for byte mask only. Byte mask hold time is defined from Low to High transition of $\overline{\text{CE}}1$ or $\overline{\text{WE}}$ whichever occurs first.
- *6 : Write recovery is defined from Low to High transition of $\overline{\text{CE}}$ 1, $\overline{\text{WE}}$, or $\overline{\text{LB}}/\overline{\text{UB}}$, whichever occurs first.
- *7 : If \overline{OE} is Low after minimum tohcl, read cycle is initiated. In other words, \overline{OE} must be brought to High within 5 ns after $\overline{CE}1$ is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tree is met.
- *8 : If \overline{OE} is Low after new address input, read cycle is initiated. In other words, \overline{OE} must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tro is met.

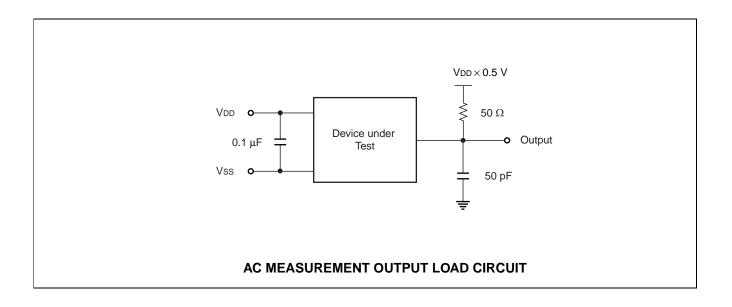
(3) POWER DOWN PARAMETERS

Parameter	Symbol	Value		Unit	Note
raiametei		Min	Max	Oilit	Note
CE2 Low Setup Time for Power Down Entry	tcsp	10		ns	
CE2 Low Hold Time after Power Down Entry	t C2LP	85		ns	
CE1 High Hold Time following CE2 High after Power Down Exit [SLEEP mode only]	tснн	300	_	μs	*1
CE1 High Hold Time following CE2 High after Power Down Exit [not in SLEEP mode]	tсннр	1	_	μs	*2
CE1 High Setup Time following CE2 High after Power Down Exit	tснs	0	_	ns	

^{*1 :} Applicable also to power-up.

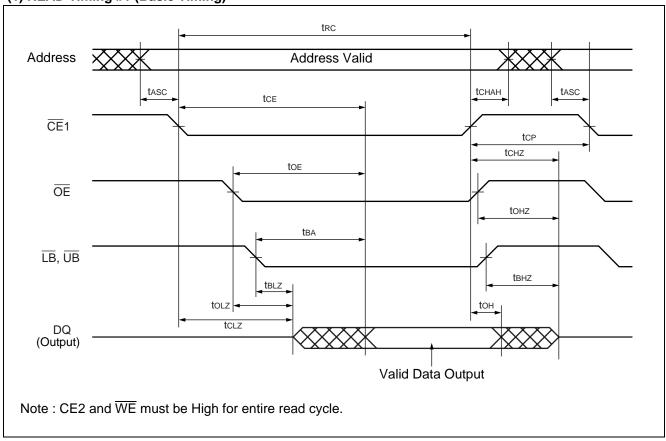
(4) OTHER TIMING PARAMETERS

Parameter	Symbol	Value		Unit	Note
Farameter	Syllibol	Min	Max	Offic	Note
CE1 High to OE Invalid Time for Standby Entry	t chox	10	_	ns	
CE1 High to WE Invalid Time for Standby Entry	t chwx	10	_	ns	*1
CE1 High Hold Time following CE2 High after Power-up	t снн	300	_	μs	
Input Transition Time	t⊤	1	25	ns	*2

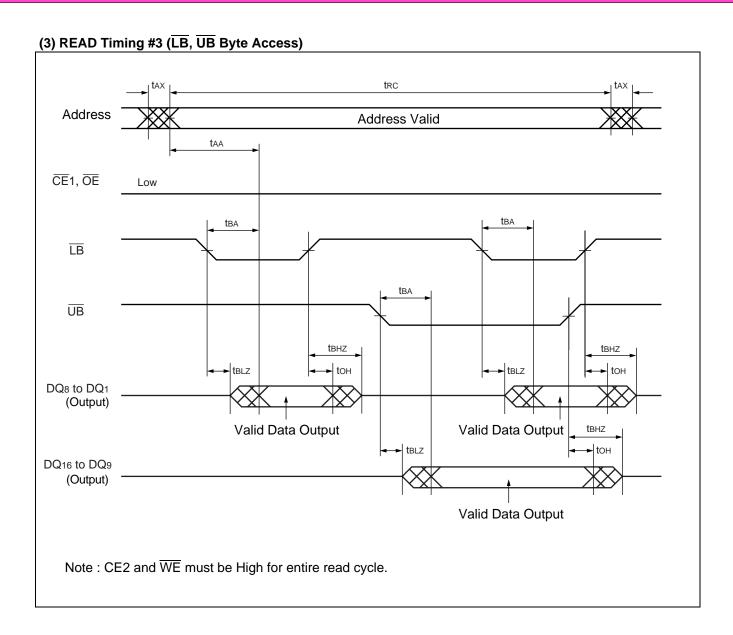

^{*1 :} Some data might be written into any address location if tchwx (Min) is not satisfied.

(5) AC TEST CONDITIONS

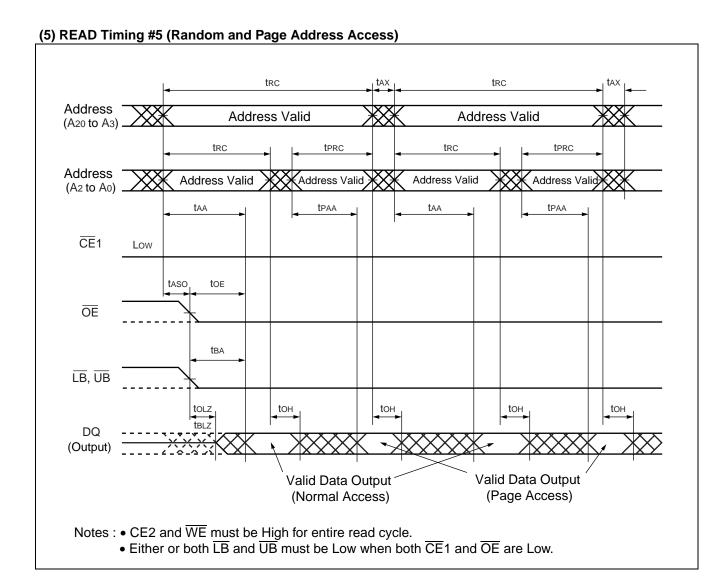
Description	Symbol	Test Setup	Value	Unit	Note
Input High Level	ViH	_	$V_{DD} \times 0.8$	V	
Input Low Level	VıL	_	$V_{DD} \times 0.2$	V	
Input Timing Measurement Level	V _{REF}	_	$V_{DD} \times 0.5$	V	
Input Transition Time	t⊤	Between V _I L and V _I H	5	ns	

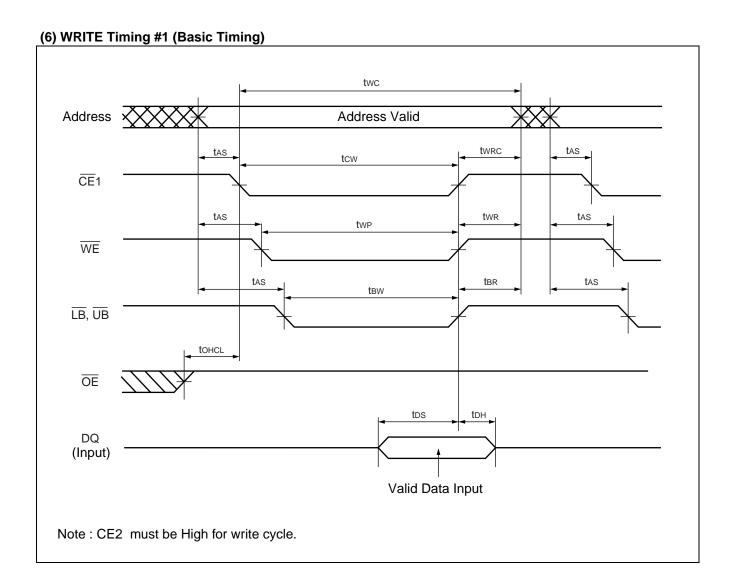

^{*2 :} Applicable when 4 M, 8 M, and 16 M Partial mode is programmed.

^{*2 :} The Input Transition Time (t_T) at AC testing is 5 ns as shown in below. If actual t_T is longer than 5 ns, it may violate AC specification of some timing parameters.

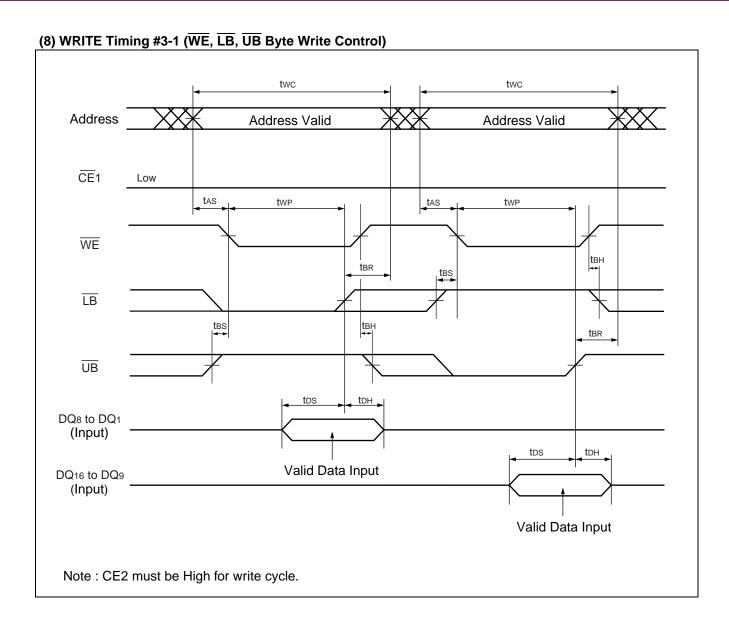


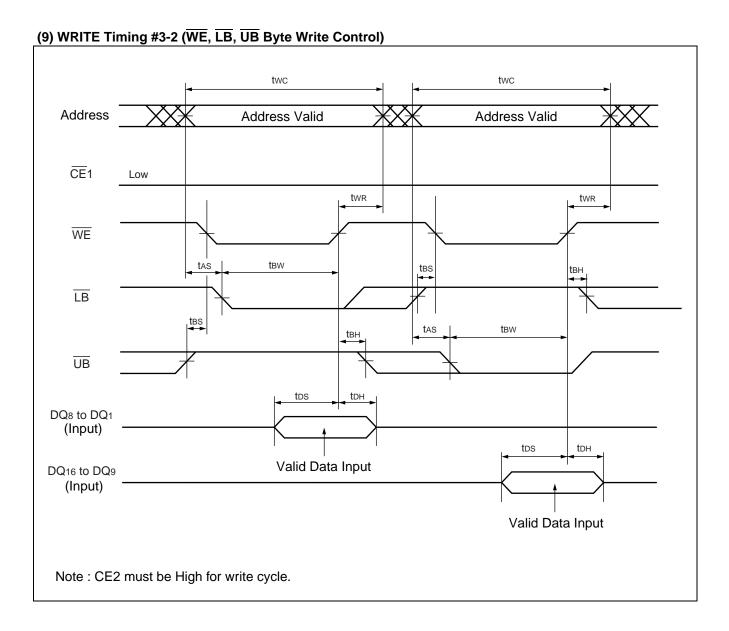
■ TIMING DIAGRAMS

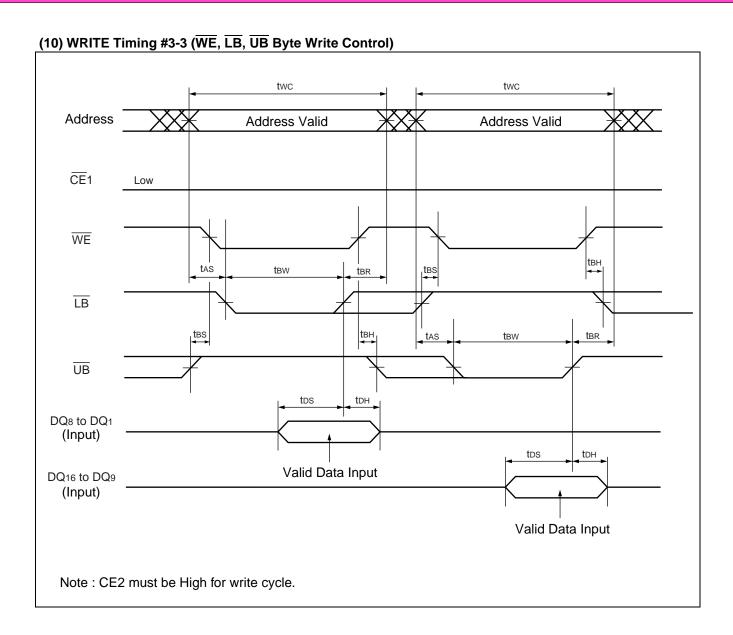

(1) READ Timing #1 (Basic Timing)

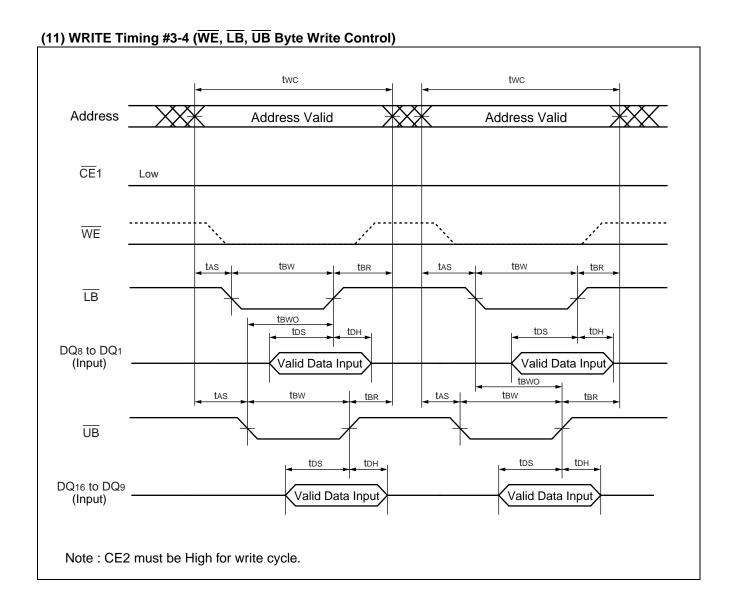


(2) READ Timing #2 (OE & Address Access) trc tax trc Address Address Valid Address Valid tohah taa **t**AA CE1 Low taso toe ŌĒ LB, UB tonz tон ton DQ (Output) Valid Data Output Valid Data Output Note : CE2 and $\overline{\text{WE}}$ must be High for entire read cycle.

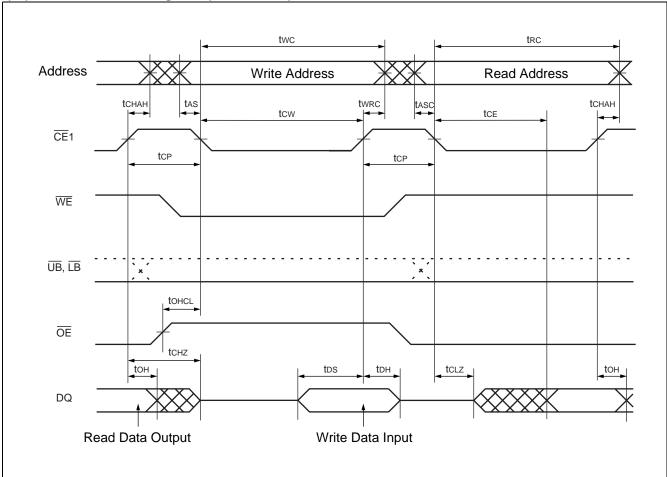


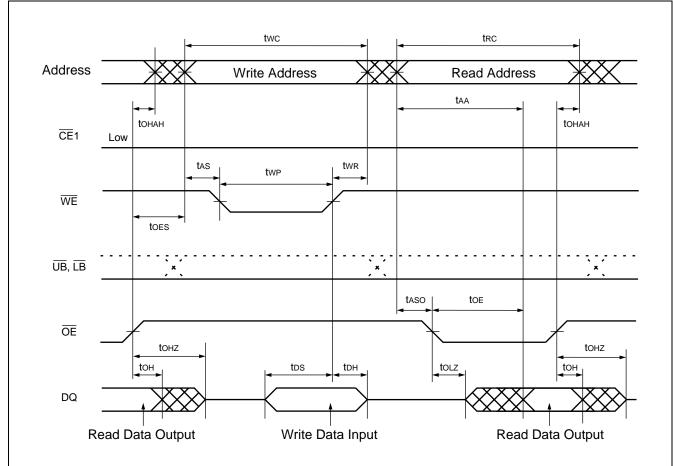

(4) READ Timing #4 (Page Address Access after CE1 Control Access) tRC Address (A20 to A3) Address Valid tRC **t**PRC **t**PRC Address (A2 to A0) Address Valid Address Valid Address Valid Address Valid **t**PAA **t**PAA **t**PAA **t**CHAH CE₁ tce tchz ŌĒ $\overline{LB}, \overline{UB}$ ton ton ton ton **→** tclz DQ (Output) Valid Data Output Valid Data Output (Page Access) (Normal Access) Note: CE2 and WE must be High for entire read cycle.



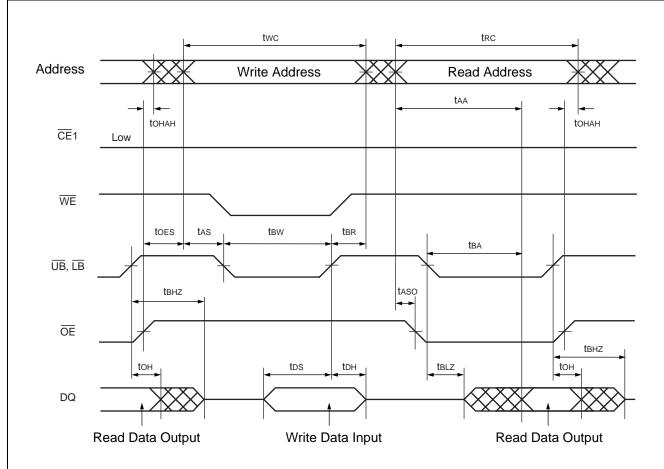


(7) WRITE Timing #2 (WE Control) twc twc Address Address Valid Address Valid **◆►** tohah CE₁ Low twR tas twR twp twp tAS WE $\overline{LB}, \overline{UB}$ toes ŌĒ tos tDH tos tDH tohz $_{(Input)}^{DQ}$ Valid Data Input Valid Data Input Note: CE2 must be High for write cycle.

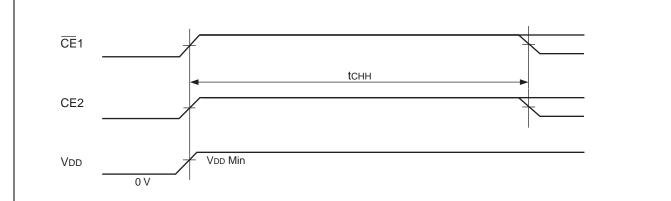



(12) READ / WRITE Timing #1-1 (CE1 Control)

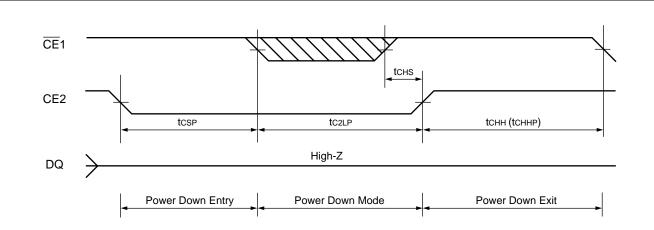
Note: Write address is valid from either $\overline{CE1}$ or \overline{WE} of last falling edge.


(13) READ / WRITE Timing #1-2 (CE1, WE, OE Control) twc trc Address Write Address Read Address tCHAH tas twR **t**CHAH tce CE₁ tcp tcp twp WE $\overline{\mathsf{UB}}, \overline{\mathsf{LB}}$ toncl toe ŌĒ tchz tolz ton tDS tDH DQ Read Data Output Write Data Input Read Data Output Note: \overline{OE} can be fixed Low during write operation if it is $\overline{CE}1$ controlled write at Read-Write-Read sequence.

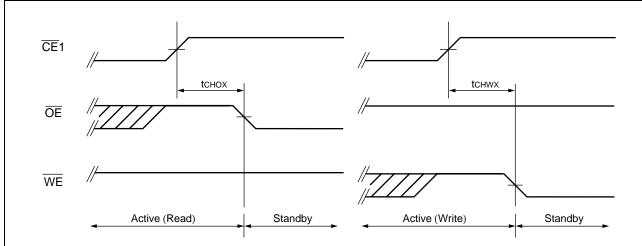
(14) READ / WRITE Timing #2 (\overline{OE} , \overline{WE} Control)


Note : $\overline{\text{CE}}1$ can be tied to Low for $\overline{\text{WE}}$ and $\overline{\text{OE}}$ controlled operation.

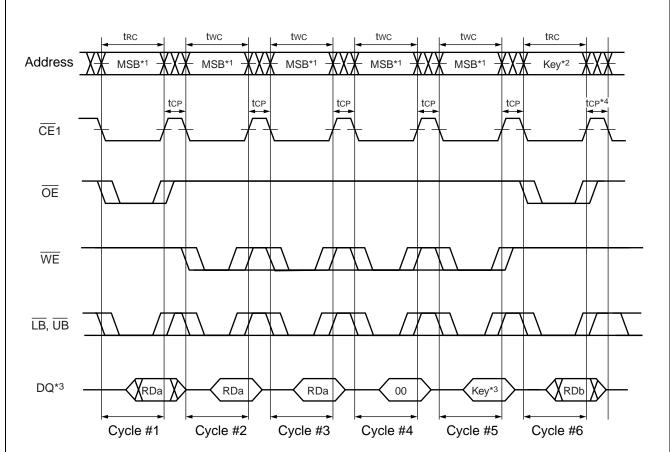
(15) READ / WRITE Timing #3 (\overline{OE} , \overline{WE} , \overline{LB} , \overline{UB} Control)


Note : $\overline{\text{CE}}1$ can be tied to Low for $\overline{\text{WE}}$ and $\overline{\text{OE}}$ controlled operation.

(16) POWER-UP Timing

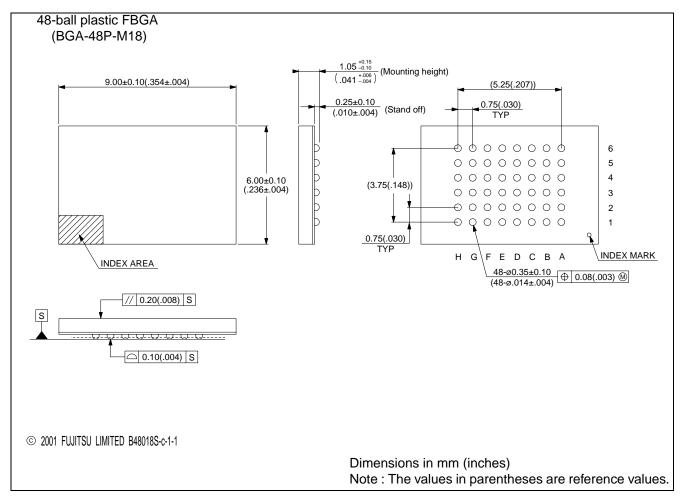

Note: The tchh specifies after VDD reaches specified minimum level and applicable both $\overline{\text{CE}}1$ and CE2.

(17) POWER DOWN Entry and Exit Timing


Note: This Power Down mode can be also used as a reset timing if " (16) POWER-UP timing" could not be satisfied and Power Down program was not performed prior to this reset.

(18) Standby Entry Timing after Read or Write

Note: Both t_{CHOX} and t_{CHWX} define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes t_{RC} (Min) period for Standby mode from $\overline{CE}1$ Low to High transition.



- *1 : The all address inputs must be High from Cycle #1 to #5.
- *2 : The address key must confirm the format specified in "■ POWER DOWN". If not, the operation and data are not guaranteed.
- *3 : The data key must confirm the format specified in "■ POWER DOWN". If not, the operation and data are not guaranteed.
- *4 : After top following Cycle #6, the Power Down Program is completed and returned to the normal operation.

■ ORDERING INFORMATION

Part No.	Package	Remarks
MB82DPS02183B-85PBN	48-ball plastic FBGA 0.75 mm pitch	tce = 85 ns Max, I _{DDS1} = 200 μA Max
MB82DPS02183B-85LPBN	(BGA-48P-M18)	tce = 85 ns Max, I _{DDS1} = 100 μA Max

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0312 © FUJITSU LIMITED Printed in Japan